3.4.77 \(\int \frac {\cosh ^4(e+f x)}{\sqrt {a+b \sinh ^2(e+f x)}} \, dx\) [377]

Optimal. Leaf size=241 \[ \frac {\cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b f}+\frac {2 (a-2 b) E\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b^2 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {(a-3 b) F\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 a b f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {2 (a-2 b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 b^2 f} \]

[Out]

1/3*cosh(f*x+e)*sinh(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2)/b/f+2/3*(a-2*b)*(1/(1+sinh(f*x+e)^2))^(1/2)*(1+sinh(f*x+
e)^2)^(1/2)*EllipticE(sinh(f*x+e)/(1+sinh(f*x+e)^2)^(1/2),(1-b/a)^(1/2))*sech(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2)
/b^2/f/(sech(f*x+e)^2*(a+b*sinh(f*x+e)^2)/a)^(1/2)-1/3*(a-3*b)*(1/(1+sinh(f*x+e)^2))^(1/2)*(1+sinh(f*x+e)^2)^(
1/2)*EllipticF(sinh(f*x+e)/(1+sinh(f*x+e)^2)^(1/2),(1-b/a)^(1/2))*sech(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2)/a/b/f/
(sech(f*x+e)^2*(a+b*sinh(f*x+e)^2)/a)^(1/2)-2/3*(a-2*b)*(a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e)/b^2/f

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 241, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3271, 427, 545, 429, 506, 422} \begin {gather*} \frac {2 (a-2 b) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)} E\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right )}{3 b^2 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {(a-3 b) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)} F\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right )}{3 a b f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {2 (a-2 b) \tanh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b^2 f}+\frac {\sinh (e+f x) \cosh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cosh[e + f*x]^4/Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

(Cosh[e + f*x]*Sinh[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(3*b*f) + (2*(a - 2*b)*EllipticE[ArcTan[Sinh[e + f*x
]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(3*b^2*f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2)
)/a]) - ((a - 3*b)*EllipticF[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(3*a*b
*f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a]) - (2*(a - 2*b)*Sqrt[a + b*Sinh[e + f*x]^2]*Tanh[e + f*x]
)/(3*b^2*f)

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 427

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[d*x*(a + b*x^n)^(p + 1)*((c
 + d*x^n)^(q - 1)/(b*(n*(p + q) + 1))), x] + Dist[1/(b*(n*(p + q) + 1)), Int[(a + b*x^n)^p*(c + d*x^n)^(q - 2)
*Simp[c*(b*c*(n*(p + q) + 1) - a*d) + d*(b*c*(n*(p + 2*q - 1) + 1) - a*d*(n*(q - 1) + 1))*x^n, x], x], x] /; F
reeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && NeQ[n*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntB
inomialQ[a, b, c, d, n, p, q, x]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 3271

Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[ff*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])), Subst[Int[(1 - ff^2*x^2)^((m - 1)/2
)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !IntegerQ
[p]

Rubi steps

\begin {align*} \int \frac {\cosh ^4(e+f x)}{\sqrt {a+b \sinh ^2(e+f x)}} \, dx &=\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {\left (1+x^2\right )^{3/2}}{\sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{f}\\ &=\frac {\cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b f}+\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {-a+3 b-2 (a-2 b) x^2}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 b f}\\ &=\frac {\cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b f}-\frac {\left (2 (a-2 b) \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 b f}+\frac {\left ((-a+3 b) \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 b f}\\ &=\frac {\cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b f}-\frac {(a-3 b) F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 a b f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {2 (a-2 b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 b^2 f}+\frac {\left (2 (a-2 b) \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\left (1+x^2\right )^{3/2}} \, dx,x,\sinh (e+f x)\right )}{3 b^2 f}\\ &=\frac {\cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b f}+\frac {2 (a-2 b) E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 b^2 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {(a-3 b) F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 a b f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {2 (a-2 b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 b^2 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.61, size = 179, normalized size = 0.74 \begin {gather*} \frac {4 i \sqrt {2} a (a-2 b) \sqrt {\frac {2 a-b+b \cosh (2 (e+f x))}{a}} E\left (i (e+f x)\left |\frac {b}{a}\right .\right )-2 i \sqrt {2} \left (2 a^2-5 a b+3 b^2\right ) \sqrt {\frac {2 a-b+b \cosh (2 (e+f x))}{a}} F\left (i (e+f x)\left |\frac {b}{a}\right .\right )+b (2 a-b+b \cosh (2 (e+f x))) \sinh (2 (e+f x))}{6 b^2 f \sqrt {4 a-2 b+2 b \cosh (2 (e+f x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cosh[e + f*x]^4/Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

((4*I)*Sqrt[2]*a*(a - 2*b)*Sqrt[(2*a - b + b*Cosh[2*(e + f*x)])/a]*EllipticE[I*(e + f*x), b/a] - (2*I)*Sqrt[2]
*(2*a^2 - 5*a*b + 3*b^2)*Sqrt[(2*a - b + b*Cosh[2*(e + f*x)])/a]*EllipticF[I*(e + f*x), b/a] + b*(2*a - b + b*
Cosh[2*(e + f*x)])*Sinh[2*(e + f*x)])/(6*b^2*f*Sqrt[4*a - 2*b + 2*b*Cosh[2*(e + f*x)]])

________________________________________________________________________________________

Maple [A]
time = 1.69, size = 356, normalized size = 1.48

method result size
default \(\frac {\sqrt {-\frac {b}{a}}\, b \left (\cosh ^{4}\left (f x +e \right )\right ) \sinh \left (f x +e \right )+\sqrt {-\frac {b}{a}}\, a \left (\cosh ^{2}\left (f x +e \right )\right ) \sinh \left (f x +e \right )-\sqrt {-\frac {b}{a}}\, b \left (\cosh ^{2}\left (f x +e \right )\right ) \sinh \left (f x +e \right )+a \sqrt {\frac {b \left (\cosh ^{2}\left (f x +e \right )\right )}{a}+\frac {a -b}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right )-\sqrt {\frac {b \left (\cosh ^{2}\left (f x +e \right )\right )}{a}+\frac {a -b}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) b -2 \sqrt {\frac {b \left (\cosh ^{2}\left (f x +e \right )\right )}{a}+\frac {a -b}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticE \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) a +4 \sqrt {\frac {b \left (\cosh ^{2}\left (f x +e \right )\right )}{a}+\frac {a -b}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, b \EllipticE \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right )}{3 b \sqrt {-\frac {b}{a}}\, \cosh \left (f x +e \right ) \sqrt {a +b \left (\sinh ^{2}\left (f x +e \right )\right )}\, f}\) \(356\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(f*x+e)^4/(a+b*sinh(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3*((-1/a*b)^(1/2)*b*cosh(f*x+e)^4*sinh(f*x+e)+(-1/a*b)^(1/2)*a*cosh(f*x+e)^2*sinh(f*x+e)-(-1/a*b)^(1/2)*b*co
sh(f*x+e)^2*sinh(f*x+e)+a*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)*(-1/a*
b)^(1/2),(a/b)^(1/2))-(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)*(-1/a*b)^(
1/2),(a/b)^(1/2))*b-2*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticE(sinh(f*x+e)*(-1/a*b)^(
1/2),(a/b)^(1/2))*a+4*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*b*EllipticE(sinh(f*x+e)*(-1/a*b)
^(1/2),(a/b)^(1/2)))/b/(-1/a*b)^(1/2)/cosh(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(f*x+e)^4/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(cosh(f*x + e)^4/sqrt(b*sinh(f*x + e)^2 + a), x)

________________________________________________________________________________________

Fricas [F]
time = 0.09, size = 25, normalized size = 0.10 \begin {gather*} {\rm integral}\left (\frac {\cosh \left (f x + e\right )^{4}}{\sqrt {b \sinh \left (f x + e\right )^{2} + a}}, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(f*x+e)^4/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

integral(cosh(f*x + e)^4/sqrt(b*sinh(f*x + e)^2 + a), x)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(f*x+e)**4/(a+b*sinh(f*x+e)**2)**(1/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3063 deep

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 806 vs. \(2 (249) = 498\).
time = 1.11, size = 806, normalized size = 3.34 \begin {gather*} \frac {\sqrt {b e^{\left (4 \, f x + 4 \, e\right )} + 4 \, a e^{\left (2 \, f x + 2 \, e\right )} - 2 \, b e^{\left (2 \, f x + 2 \, e\right )} + b} e^{\left (f x + e\right )}}{24 \, b f} + \frac {{\left (\frac {4 \, {\left (a \sqrt {b} e^{\left (4 \, e\right )} - 2 \, b^{\frac {3}{2}} e^{\left (4 \, e\right )}\right )} \log \left ({\left | -{\left (\sqrt {b} e^{\left (2 \, f x + 2 \, e\right )} - \sqrt {b e^{\left (4 \, f x + 4 \, e\right )} + 4 \, a e^{\left (2 \, f x + 2 \, e\right )} - 2 \, b e^{\left (2 \, f x + 2 \, e\right )} + b}\right )} b - 2 \, a \sqrt {b} + b^{\frac {3}{2}} \right |}\right )}{b} + \frac {2 \, {\left (9 \, a^{2} e^{\left (4 \, e\right )} - 21 \, a b e^{\left (4 \, e\right )} + 16 \, b^{2} e^{\left (4 \, e\right )}\right )} \arctan \left (-\frac {\sqrt {b} e^{\left (2 \, f x + 2 \, e\right )} - \sqrt {b e^{\left (4 \, f x + 4 \, e\right )} + 4 \, a e^{\left (2 \, f x + 2 \, e\right )} - 2 \, b e^{\left (2 \, f x + 2 \, e\right )} + b}}{\sqrt {-b}}\right )}{\sqrt {-b} b} - \frac {3 \, {\left (6 \, {\left (\sqrt {b} e^{\left (2 \, f x + 2 \, e\right )} - \sqrt {b e^{\left (4 \, f x + 4 \, e\right )} + 4 \, a e^{\left (2 \, f x + 2 \, e\right )} - 2 \, b e^{\left (2 \, f x + 2 \, e\right )} + b}\right )}^{3} a^{2} e^{\left (4 \, e\right )} - 14 \, {\left (\sqrt {b} e^{\left (2 \, f x + 2 \, e\right )} - \sqrt {b e^{\left (4 \, f x + 4 \, e\right )} + 4 \, a e^{\left (2 \, f x + 2 \, e\right )} - 2 \, b e^{\left (2 \, f x + 2 \, e\right )} + b}\right )}^{3} a b e^{\left (4 \, e\right )} + 5 \, {\left (\sqrt {b} e^{\left (2 \, f x + 2 \, e\right )} - \sqrt {b e^{\left (4 \, f x + 4 \, e\right )} + 4 \, a e^{\left (2 \, f x + 2 \, e\right )} - 2 \, b e^{\left (2 \, f x + 2 \, e\right )} + b}\right )}^{3} b^{2} e^{\left (4 \, e\right )} - 4 \, {\left (\sqrt {b} e^{\left (2 \, f x + 2 \, e\right )} - \sqrt {b e^{\left (4 \, f x + 4 \, e\right )} + 4 \, a e^{\left (2 \, f x + 2 \, e\right )} - 2 \, b e^{\left (2 \, f x + 2 \, e\right )} + b}\right )}^{2} b^{\frac {5}{2}} e^{\left (4 \, e\right )} - 10 \, {\left (\sqrt {b} e^{\left (2 \, f x + 2 \, e\right )} - \sqrt {b e^{\left (4 \, f x + 4 \, e\right )} + 4 \, a e^{\left (2 \, f x + 2 \, e\right )} - 2 \, b e^{\left (2 \, f x + 2 \, e\right )} + b}\right )} a^{2} b e^{\left (4 \, e\right )} + 18 \, {\left (\sqrt {b} e^{\left (2 \, f x + 2 \, e\right )} - \sqrt {b e^{\left (4 \, f x + 4 \, e\right )} + 4 \, a e^{\left (2 \, f x + 2 \, e\right )} - 2 \, b e^{\left (2 \, f x + 2 \, e\right )} + b}\right )} a b^{2} e^{\left (4 \, e\right )} - 7 \, {\left (\sqrt {b} e^{\left (2 \, f x + 2 \, e\right )} - \sqrt {b e^{\left (4 \, f x + 4 \, e\right )} + 4 \, a e^{\left (2 \, f x + 2 \, e\right )} - 2 \, b e^{\left (2 \, f x + 2 \, e\right )} + b}\right )} b^{3} e^{\left (4 \, e\right )} - 4 \, a b^{\frac {5}{2}} e^{\left (4 \, e\right )} + 6 \, b^{\frac {7}{2}} e^{\left (4 \, e\right )}\right )}}{{\left ({\left (\sqrt {b} e^{\left (2 \, f x + 2 \, e\right )} - \sqrt {b e^{\left (4 \, f x + 4 \, e\right )} + 4 \, a e^{\left (2 \, f x + 2 \, e\right )} - 2 \, b e^{\left (2 \, f x + 2 \, e\right )} + b}\right )}^{2} - b\right )}^{2} b}\right )} e^{\left (-3 \, e\right )}}{24 \, b f^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(f*x+e)^4/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

1/24*sqrt(b*e^(4*f*x + 4*e) + 4*a*e^(2*f*x + 2*e) - 2*b*e^(2*f*x + 2*e) + b)*e^(f*x + e)/(b*f) + 1/24*(4*(a*sq
rt(b)*e^(4*e) - 2*b^(3/2)*e^(4*e))*log(abs(-(sqrt(b)*e^(2*f*x + 2*e) - sqrt(b*e^(4*f*x + 4*e) + 4*a*e^(2*f*x +
 2*e) - 2*b*e^(2*f*x + 2*e) + b))*b - 2*a*sqrt(b) + b^(3/2)))/b + 2*(9*a^2*e^(4*e) - 21*a*b*e^(4*e) + 16*b^2*e
^(4*e))*arctan(-(sqrt(b)*e^(2*f*x + 2*e) - sqrt(b*e^(4*f*x + 4*e) + 4*a*e^(2*f*x + 2*e) - 2*b*e^(2*f*x + 2*e)
+ b))/sqrt(-b))/(sqrt(-b)*b) - 3*(6*(sqrt(b)*e^(2*f*x + 2*e) - sqrt(b*e^(4*f*x + 4*e) + 4*a*e^(2*f*x + 2*e) -
2*b*e^(2*f*x + 2*e) + b))^3*a^2*e^(4*e) - 14*(sqrt(b)*e^(2*f*x + 2*e) - sqrt(b*e^(4*f*x + 4*e) + 4*a*e^(2*f*x
+ 2*e) - 2*b*e^(2*f*x + 2*e) + b))^3*a*b*e^(4*e) + 5*(sqrt(b)*e^(2*f*x + 2*e) - sqrt(b*e^(4*f*x + 4*e) + 4*a*e
^(2*f*x + 2*e) - 2*b*e^(2*f*x + 2*e) + b))^3*b^2*e^(4*e) - 4*(sqrt(b)*e^(2*f*x + 2*e) - sqrt(b*e^(4*f*x + 4*e)
 + 4*a*e^(2*f*x + 2*e) - 2*b*e^(2*f*x + 2*e) + b))^2*b^(5/2)*e^(4*e) - 10*(sqrt(b)*e^(2*f*x + 2*e) - sqrt(b*e^
(4*f*x + 4*e) + 4*a*e^(2*f*x + 2*e) - 2*b*e^(2*f*x + 2*e) + b))*a^2*b*e^(4*e) + 18*(sqrt(b)*e^(2*f*x + 2*e) -
sqrt(b*e^(4*f*x + 4*e) + 4*a*e^(2*f*x + 2*e) - 2*b*e^(2*f*x + 2*e) + b))*a*b^2*e^(4*e) - 7*(sqrt(b)*e^(2*f*x +
 2*e) - sqrt(b*e^(4*f*x + 4*e) + 4*a*e^(2*f*x + 2*e) - 2*b*e^(2*f*x + 2*e) + b))*b^3*e^(4*e) - 4*a*b^(5/2)*e^(
4*e) + 6*b^(7/2)*e^(4*e))/(((sqrt(b)*e^(2*f*x + 2*e) - sqrt(b*e^(4*f*x + 4*e) + 4*a*e^(2*f*x + 2*e) - 2*b*e^(2
*f*x + 2*e) + b))^2 - b)^2*b))*e^(-3*e)/(b*f^2)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\mathrm {cosh}\left (e+f\,x\right )}^4}{\sqrt {b\,{\mathrm {sinh}\left (e+f\,x\right )}^2+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(e + f*x)^4/(a + b*sinh(e + f*x)^2)^(1/2),x)

[Out]

int(cosh(e + f*x)^4/(a + b*sinh(e + f*x)^2)^(1/2), x)

________________________________________________________________________________________